翻訳と辞書
Words near each other
・ Pavillon de l’Horloge
・ Pavillon de Paris
・ Pavillon des Arts
・ Pavillon des sports Modibo Keita
・ Pavillon du Butard
・ Pavillon Noir
・ Pavillon Suisse
・ Pavillon Vendôme
・ Pavilly
・ Pavillón Multiusos Fontes do Sar
・ Pavillón Municipal dos Deportes de Pontevedra
・ Pavin
・ Pavin (cheese)
・ Pavine
・ Pavine (molecule)
Paving matroid
・ Paving Wall Street
・ Pavino
・ Pavino Polje
・ Pavinsky District
・ Pavis Wood
・ Pavise
・ Pavithra
・ Pavithra Wanniarachchi
・ Pavithram
・ Pavithrampudur
・ Pavithran
・ Pavithran (Tamil film director)
・ Pavithreswaram
・ Pavithrotsavam


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Paving matroid : ウィキペディア英語版
Paving matroid

In the mathematical theory of matroids, a paving matroid is a matroid in which every circuit has size at least as large as the matroid's rank. In a matroid of rank r every circuit has size at most r+1, so it is equivalent to define paving matroids as the matroids in which the size of every circuit belongs to the set \.〔.〕 It has been conjectured that almost all matroids are paving matroids.
==Examples==
Every simple matroid of rank three is a paving matroid; for instance this is true of the Fano matroid. The Vámos matroid provides another example, of rank four.
Uniform matroids of rank r have the property that every circuit is of length exactly r+1 and hence are all paving matroids; the converse does not hold, for example, the cycle matroid of the complete graph K_4 is paving but not uniform.
A Steiner system S(t,k,v) is a pair (S,\mathcal) where S is a finite set of size v and \mathcal is a family of k-element subsets of S with the property that every t-element subset of S is also a subset of exactly one set in \mathcal. The elements of \mathcal form a t-partition of S and hence are the hyperplanes of a paving matroid on S.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Paving matroid」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.